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Foreword

This report was prepared by Urho A. Uotila and Richard H. Rapp, ~
Professors, Department of Geodetic Science at The Ohio State University,
under Air Force Contract No. F19628-76-C-0010, OSURF Projects No.
710334 and 710335. This is a final report of the contract covering time
period July 1, 1975 to September 30, 1978. It has been administered by
the Air Force Geophysics Laboratory, Air Force Systems Command,
Hanscom AFB, Massachusetts with Mr. Bela Szabo, Contract Monitor.

The research done under this contract has been previously reported
in twenty-two scientific and two internal reports. In the following the
scientific work done under this contract will be summarized. The sub-
headings 1.1-1.7, and 2, are written by Uotila and 1.8-1.12, 3, 4, and 5
are written by Rapp related to research work done under OSURF projects
710334 and 710335, respectively, which have been under their supervision.

The authors wish to thank all of those who have participated in the
research under the contract. Special mention should be made about the
excellent contributions of Drs. Hajela, Jekeli, Kearsley, Moritz, Rapp,
Rummel, Schwarz, Sjoberg, Sunkel and Tscherning to the successful
completion of the research contract. The authors acknowledge the cooper-
ation and support given and express their appreciation to the Contract
Monitor, Mr. Bela Szabo, for the stimulating technical and scientific
discussions.
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1. Collocation and Related Subjects

Dr. Moritz prepared six, Dr. Sjoberg two, and Drs. Rummel, Sunkel,
Tscherning and Jekeli one technical report in this area. Part of the
summaries reported under 1,1-1.7 are taken directly from Moritz's and
Sunkel's reports without quotation marks. The titles of the reports are used
as the subheadings for the presentation.

1.1 Integral Formulas and Collocation

Various aspects of the interplay between least-squares collocation and
classical integral formulas were subjects of Moritz's report (1975) "Integral
Formulas and Collocation. "

The first three sections of the report were concerned with the proof that
integral formulas, such as Stokes' and Molodensky's equations, might be con-
sidered as limiting cases of collocation for homogencous and regularly and
densely distributed data. Moritz showed that the two types of methods are in-
deed compatible and, what is more, they even complement each other from the
point of view of practical application.

Sections 4 and 5 dealt with applications of least-squares methods to adjust
continuous data, with a view to using them in Stokes' and other integral formulas.

Practical and numerical aspects were presented in the last section and the
relative merits of both types of techniques and their interplay were considered.
With respect to numerical computation, Moritz concluded that integral formulas
and collocation techniques mutually complement each other, so that in many
practical cases a judicious combination of the two procedures may be practically
most convenient,

Throughout his report, the so-called spherical approximation was used. It
consisted in neglecting, in equations that relate quantities of the anomalous gravity
field, small terms on the order of the flattening; thereby ellipsoidal relations
were formally transformed into spherical formulas. More precisely, a point
on or near the earth's surface, having geodetic coordinates &, A and height h
above the ellipsoid, was mapped into a point that had spherical coordinates %,

X and height h above a sphere of radius R, R = 6370 km being the mean radius
of the earth and 3, A, h being numerically the same in both cases.

The spherical approximation considerably simplified formulas, while its
error was negligible in most practical cases. It underlies Stokes' and Vening
Meinesz' integral formulas, as well as most solutions of Molodensky's problem;
it also underlies least-squares collocation. If necessary, cllipsoidal effects
could easily be taken into account by small correction terms to the spherical
approximation as shown by Moritz in his earlier report (1974).
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1.2 Covariance Functions in I.cast-Squares Collocation

Least-squares collocation depends essentially on the covariance functions
used. This is especially true for accuracy studies, for which, on the other hand,
collocation provides a powerful mathematical apparatus.

For instance, it is known that some analytical expressions for covariance
functions lead to imaginary standard errors. What is wrong with such functions ?
They are not positive definite.

It is also well known that the covariance functions are responsible for the
precise mathematical structure of the gravity field through covariance propaga-
tion. This implies that the basic covariance functions must be harmonic.

It appears, therefore, appropriate to elaborate, in some detail mathematical
properties of covariance functions such as positive definiteness and harmonicity.

Another question is how to characterize a covariance function sufficiently
well by a small number of parameters, in such a way that two different covariance
functions that have these parameters in common, give approximately the same
result,

To find a good analytical covariance function, one tries to represent it as
a linear combination of simpler functions. It is, therefore, desirable to know
the behavior of such simple models which may serve as building blocks for a
global covariance function.

All these problems were considered in the first part of Moritz's report
(1976a): "Covariance Functions in Least-Squares Collocation.'" He dealt with
the mathematical structure of covariance functions. The properties of isotropy,
harmonicity and positive definiteness were discussed, and Moritz suggested that
a covariance function may be characterized by three essential parameters: the
variance, the correlation length and a curvature parameter. He also considered
some spatial covariance models (planar and spherical).

The second part of his report dealt with the following question: What happens
if the "true' covariance function is unknown and least-squares collocation is,
instead, pcrformed with a "wrong'" (or more precisely, non-optimal) covariance
function ?

How does the result change with respect to the optimal case, and what is the
effect on accuracy studies ?

Moritz treated the influence of covariances on the results of collocation. For-
mulas were developed for the standard error of collocation results when using non-
optimal covariance functions, also for the case of stepwise collocation. Finally
the behavior of interpolation errors with and without the additional use of horizontal
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gradients was studied by means of power series expansions for covariance
functions and by means of Gaussian covariance functions. Moritz concluded
that non-optimal covariance functions had relatively little influence on the
interpolated values but a very strong effect on covariances as calculated using
the conventional formulas.

1.3 Least-Squares Collocation as a Gravitational Inverse Problem

In geodesy and geophysics we frequently meet with the situation that a
model defined by a set of, say, N parameters is to be determined from a
smaller number n <~ N of observations,

As an example, the internal structure of the carth may be defined by a set
of N parameters describing the density, the rigidity, and the compressibility
of the earth as a function of depth. The n observations comprise velocities of
seismic surface waves, together with the mass and the polar moment of inertia
of the earth. If the model for the earth's internal structure is to be realistic,
then N will be large and n < N.

We thus have n < N equations for N unknowns, which is obviously an
underdetermined problem admitting an infinite number of possible improperly
posed problem. (A problem is properly posed if it has a unique solution that
depends continuously on the data.)

Originally, the equations expressing the data x; as functions of the model
parameters s. will, in general, be nonlinear:

Ry = i (BanBhy snns B, U L PO s

By a suitable application of Taylor's theorem it is usually possible to approximate
these equations by linear ones:

Xy =

r

uir Sy ’
1

s B

or in matrix notation:
X = As.,
The formal solution of this system of linear equations may be written as
-1

—§::A x.

If A were a regular square matrix, the ﬁ” would be the ordinary inverse matrix
of A. In our underdetermined case, however, A~' must be understood in the
sense of generalized matrix inverses,




At any rate, the solution of the above equations may be considered as an
inversion of these equations with respect to the parameters s, , which accounts
for the name, geophysical inverse problems.

Another typical example of an "improperly posed' inverse problem is the
determination of subsurface mass distributions which produce a given anomalous
gravity field at the carth's surface, This problem is sometimes called an inverse
problem of potential theory.

The determination of the earth's external gravitational field from geodetic
gravimetric and satellite data may also be considered as an inverse problem
that is mathematically quite similar to the determination of the internal structure
of the earth from secismic and other data.

This geodetic inverse problem is likewise underdetermined. The external
gravitational ficld requires for a complete description an infinite number of
parameters, for instance, the set of all coefficients in the expansion of the
external gravitational potential in spherical harmonics. This infinite number,
N = « , of parameters is to be determined from a finite number n of obser-
vations.

Even in the secismic inverse problem it is, at least theoretically, appropriate
to take N = = if we wish to admit reasonable general functions for density,
rigidity, and compressibility because it cannot be assumed a priori that such
functions depend on a finite number of parameters only.

Thus, in general, the space of parameters will be infinite-dimensional
rather than N-dimensional. In other words, the proper general setting for
(linear) geodetic and geophysical inverse problems will be infinite-dimensional
Hilbert space. This was pointed out by Krarup (1969) for the geodetic case and
by Backus (1970) for geophysical inverse problems.

The geodetic inverse problem, the determination of the external gravita-
tional field from data of different kind, is usually solved by least-squares col-
location. This technique has many features in common with other geophysical
inversion methods. It may, therefore, be of interest to compare these techniques
and to exhibit some cross-connections, This was done by Moritz in his report
(1976b): ''Least-Squarcs Collocations as a Gravitational Inverse Problem, "

He also discussed least-squares collocation from the point of view of
analytically representing the external gravitational field by a linear combination
of suitable simpler harmonic functions.

Moritz said that the subject of his report is purely conceptual, aiming at
a better understanding of least-squares collocation by considering it in relation
to other methods; no new computational formulas were derived. His paper is
uscful as a contribution to the present discussion on the conceptual foundations of
least-squares collocation.
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1.4 On the Computation of a Global Covariance Modc]

In his report Moritz (1976a) showed that the local behavior of a covariance
function of the gravity anomaly, Ag, can be characterized quite well by means
of three constants: C, variance of Ag, € correlation length and G,
variance of the horizontal gradient of Ag. In his report "On the Computation
of a Global Covariance Model" (Moritz, 1977), he treated the problem of de-
termining a global covariance function if the following data are given: the var-
iance of gravity anomalies, the variance of sccond-order gradients, the corre-
lation length and the lower degree variances. He proposed that covariance model
is a linear combination of the reciprocal distance covariance function and a co-
yariance function of logarithmic type. He also found that the correlation length
is already fixed, within rather narrow limits, by the remaining data. It turncd
out that the gradient variance, Gy, rather than the correlation length, £,
provides a basis for calculating 2 global covariance function from local covari-
ance functions,

1.5 Statistical Foundations of Collocation

Users of least-squares collocation ask for a theory that gives an answer to
practically meaningful questions: What is the accuracy of our results ? Can we
apply statistical testing techniques? How can we compute statistical distributions
of gravity anomalies or of deflections of the vertical? A reasonable answer to
these questions requires some statistical theory of the anomalous gravitational
field. But is this field really a stochastic phenomenon? Such questions scem to
motivate research into the statistical foundations of collocation.

Least-squares collocation has its roots in many ficlds:

Least-squares estimation;

Prediction theory of stochastic processes;
Approximation theory;

Functional analysis, especially the theory of Hilbert
spaces with kernel functions;

. Potential theory;

6. Inverse and improperly posed problem.,

> W =
Y

wn

All of these '"many facets of collocation' present relevant aspects which must be
taken into account in a complete and balances trcatment.

The relation to the theory of inverse problems is clear; our data are function-

ally related to the gravitational field; to determine this ficld from the data, we
must somehow invert those functional relations. Now the gravity field requires

infinitely many parameters for its full determination; the number of measurcments,

however, is essentially finite. Therefore, we have an improperly posed problem.
To get a unique solution, we must impose additional conditions, which may have
the form of a least-squares principle or of a norm in Hilbert space.

B b




Historically, collocation has developed from least-squares prediction of
gravity anomalies, which is an application of the prediction theory of stochastic
processes. Hence, statistical considerations have played an essential role in
collocation from the very beginning.

Also, the relation to classical least-squares adjustment has soon been
noted. In fact, collocation models bear formal resemblance to conventional
adjustment models. The characteristic difference, however, is the infinite
number of parameters necessary to fully characterize the gravitational field.
This fact furnished an essential link to stochastic processes and to infinite-
dimensional Hilbert spaces.

Least-squares estimation and stochastic processes give a very convenient
mathematical formalism and terminology. They also provide the basis for a
statistical interpretation of the results, essential for feasibility studies.

The practical success of the statistical treatment of collocation has some-
times overshadowed its equally significant analytical aspects, especially the fact
that there is a clean analytical structure underlying it. This mathematical
structure is based on the harmonic character of the anomalous gravitational
field and on the fact that all quantities of this field can be expressed as linear
functionals of the anomalous potential. The analytical character of collocation
is best brought out by approaching it from the standpoint of approximation theory,
working in a Hilbert space with a kernel function.

These two aspects, the statistical and the analytical aspect, are both indis-
pensable and mutually complement each other. In fact, evident already in the
fundamental paper (Krarup, 1969), seems to be generally agreed upon, although
there is some controversy on details,

A literal interpretation of the anomalous gravitational field as a stochastic
process hias encountered two objections. First, there is only one Earth; a
probability space of many possible earths is logically unobjectable, but appears
unnatural, since all realizations except one (the real Earth) are unobservable.
Secondly, Lauritzen (1973) has proved that there is no ergodic Gaussian process,
harmonic outside a sphere. This has sometimes been misinterpreted as a proof
that no ergodic process modeling the anomalous gravity field exists at all, so
that the covariance function, in principle, cannot be estimated from the data.

In fact, however, the Gaussian structure enters essentially into Lauritzen's
proof, and there do exist non-Gaussian ergodic processes suitable for collocation.

In his paper 'Statistical Foundation of Collocation" (1978a), Moritz deals
with mathematical models suitable as a basis for statistical treatment of collo-
cation. As a preparation he discusses first the stochastic processes on the
circle, because such processes are simple to understand and they exhibit already
cssential features of the problem.. Then he treats stochastic processes on the
sphere, which arc suitable as statistical models for collocation, Moritz shows
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that Lauritzen's theorem on the nonexistance of ergodic Gaussian stochastic
process models for collocation to he cssentinlly dependent on the Gaussiin
character. He gives two non-Gaussian crgodic models, one of a ginuinely
probabilistic character similar to Lauritzen's model, and another based on a
formal probability theory in rotation group space,

This second model gives @ totistical foundation of the usual homogencous
and isotropic covariance analyvsis of the apomalous gravity field, The model also
provides a basis for the study of the statistical distribution of quantitics related
to this field. [t also allows a forma! statistical {reatment of the anomalous
gravitational field which is independent of an interpretation of this field as some
genuinely physical stochastic procoss and scems, therefore, to be preferable.

If the approach presented by Vorits is aceepted, then a detailed theory of
statistical distributions for gcod Iy relevant quantities, such as gravity
anomalies, geoidal heights, and o flcetions of the vertical, could be developed
and applied to the statistical testing of (0 results of least-squares collocation,
1.6 The Operational Approach to 1'h sical Geodesy

There are esseantially two possibl
to other natural sciences): they might be called the model approach and tiwe
operational approach. Essentially, the first approach starts from a theory, the
second from the observations. Obviously, the two approaches are closely related
to the deductive method and the inductive method in the natural sciences.

pproaches to physical geodesy (as also

In the model approach, one starvts from a mathematical model or from a
theory and then trics (o fit this model (o reality, for instance by dete rmining the
parameters of this model from obscrvations. The classical geodetic example are
the centuries-old attempts to determine the parameters of an earth cllipsoid by
observations.

Perhaps the most elaborate form of this model approach is the houndary-
value problem of physical geodesy in the formulation of Molodensky. [t has a
mathematically enormously interesting and deep theory and is practically highlv
significant, as the many gravimetric geoid determinations and computations of
deflections of the vertical show. Howover, this approach has its weaknesses: the
required continuous gravity coverage is practically not realizable: on the other
hand, many other important data cannot he incorporated into this theory. The
model selects its data,

At present we have a great number of geodetic measurements of very
different types, from terrestrial angle and distance measurements to satellite
data of various kinds. The question ariscs: how can we use and combine all
these data in the best possiblc wuy? This i« the operational approach.




l.et us summarize, In the model approach one asks: how can [ best de~
termine my model by suitable observations 2 In the operational approach one
asks: how can I make best use of all my observations ?

As a malter of fact, the two approaches do not compete with each other;
each one incorporates important aspects, and the two approaches mutually
complement each other,

fhe operational approach to physical geodesy has come up at a relatively
recent date, when a huge number of measurements of new types was avaijlable
and when it turned out that the classical, especially the gravimetric approach
failed to give a complete answer in view of the lack in gravity data,

In geomelrical geodesy already least-squares adjustment is in the spirit
of an operational approach (how can | best use all my measurements). In
physical geodesy, operational methods have been known under the names 'least-
squares collocation, ' "integrated geodesy, " "operational gendesy. ' All these
methods are very similar; they all aim at an adequate treatment of the gravity
field, in addition to an adjustment of measuring errors. They all use quadratic
minimum principles incorporating not only the measuring errors, but also the
anomalous gravity field.

Moritz (1978b) presented a systematic treatment of the operational approach
in his report: '"I'he Operational Approach to Physical Geodesy.!' He shows that,
using contemporary mathematical techniques, a straight road leads from the non-
linear observational equations to collocation with kernel functions and least-squares
collocation. After linearization an improperly posed problem was obtained, to
which Moritz applied three different standard methods of solution: 1) a restriction
of the solution space, leading to "pure-collocation, ' 2) variational principles
of Tichonov type, by which measuring errors can be taken into account, leading to
a generalized collocation with kernel functions, and 3) a statistical approach,
leading to least-squares collocation,

Al the end of his report, Moritz discussed these various stages and possible

alternatives. All three approaches seem to converge on collocation with kernel
functions and lcast-squarces collocation,

1.7 Approximation of Covariance Functions by Non-positive Definite Functions

During the last decade, when least-squares collocation presented itself as
the data processing model in physical geodesy, the most serious argument against
was the inversion of a large matrix resulting in much computer time needed for
this purpose. No attention was paid to the time used for calculating the linear
functionals on the covariance function because for simple problems this time is
definitely inferior to the inversion time. The situation, however, changed im-
mediately when problems were attacked which involved many and/or difficult
covariance caleulations. Although Rapp and Tscherning (1974) succeeded in
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deriving closed expressions of covariance functions for different models of
anomaly degree variances, the closed expressions still consist of functions like
logarithmic and trigonometric functions, which are expensive in terms of com-
puter time.

We mention only a few kinds of application: prediction of mean gravity
anomalies over rectangular blocks from point values, prediction of mean gravity
anomalies over larger areas from mean gravity anomalics over smaller areas,
prediction of mean gravity anomalies from satellite altimetry data, all problems
involving satellite dynamics. All these applications have one common feature:
it is necessary to calculate covariances by numerical integration. In case of
mean gravity anomaly prediction the integration is at most twofold, in case
of satellite dynamics, however, it is multifold. In the former case an explicit
integration procedure can be avoided, if onc replaces the rectangular area of
integration by a circular one. The so-called smoothing operation is caused by
an isotropic smoothing operator acting on the covariance function which itself
is also isotropic. Therefore, the convolution of the smoothing operator with
the covariance function corresponds to a product of the corresponding cigen-
values, which is naturally very simple. In order to obtain closed expressions
for the mean gravity anomaly function, however, a further artificial assumption
has to be made: the eigenvalues of the smoothing operator have to be replaced
by some other values (Schwarz, 1976). In problems involving satellite dynamics
as satellite-to-satellite ranging probably the only way to calculate covariances
is by numerical integration over some time interval. Using exact covariances
for the integration procedure is extremely time consuming.

These were the reasons why the question arose whether it is possible to
use some more or less accurate approximations of the exact covariance functions;
the approximating functions should be simple, easy to handle, accurate and should
consume as little mass storage as possible. Sunkel (1978) studied this problem
and reported his findings in the report: "Approximation of Covariance Functions
by Non-Positive Definite IFunctions.' He studied three different kinds of approx-
imating functions, all of them being finite clements; 1) a step function, 2)
a piecewise linear function and 3 ) a cubic-spline function.

The basic principle underlying his investigations was well known and fre-
quently applied in many fields; the network principle: generate a net of fixed
points (here grid points) and perform very accurate measurements at these
points (here, calculate exact covariances); these fixed points serve as a basis
for small scale measurements which can be performed using simpler apparatus
(here, more or less interpolation of covariances by means of finite clements).
His report was primarily devoted to the study of interpolation errors, pertur-
bation of spectra and to the consequences of the approximation for the predicted
signal and its mean square error. Sunkel concluded that because of its smooth-
ness and its most favourable approximation properties the spline function rep-
resentation of the covariance function presents itself as a very useful tool for this
kind of application.
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1.8 Covariance Expressions for Second and Lower Order Derivatives of the
Anomalous Potential \

Since Moritz (1972) discussed the theory and application of least squares
collocation techniques for gravimetric geodesy problems a number of additional
studics have been done to gain better insight into collocation from a theoretical
point of view, and to apply least squares collocation techniques to geodetic prob-
lems of interest.

One aspect of this work is the development of consistent covariance func-
tions. One step in this direction was described in Tscherning and Rapp (1974).
Tn this paper an anomaly degree variance model was developed that was fitted
to different types of information that could be related to the anomaly degree
variances. In that paper the following model was chosen:

et
% T Ti-2i( ks B) {44

where A =425.28 mgal®, B=24, anda parameter s (used in the applicaticn

of ¢,), s=0.999617. In that report a number of covariance and cross cov-
ariar;ce functions were derived involving anomalies, deflections of the vertical,
and geoid undulations. All these quanties were considered to be global covariance
functions based on a single anomaly degree variance model.

What was lacking from the above study were the covariances involving a
number of derivatives that could be related to gravity gradients. To extend the
carlier work Tscherning (1976) developed an extended set of covariance function
equations for use with several different anomaly degree variance models. More
specifically Tscherning (ibid.) chose to model the potential degree variances
which refer to the disturbing potential. Thus if cov (Ts,Tq) is the covariance
between the disturbing potential at points P and Q he writes:

cov (Te,Tq) '-:S-' U;‘(T,T)Sﬁ*’lpi(t)
=0
e o 241
s b (BT B (2)

£=0

m c
where: 0, (T,T) are the model potential degree variances and oy (T,T)
are corrections to the model potential degree variances to degree n. We have:

5= Ré”/(rp‘rq) and t = cos Y (3)
where Ry, is the radius of the Bjerhammer sphere, r is a geocentric distance

and ¥ is the arc between the two points. Tscherning (ibid.) writes the o (T, T)
values in the following general form:

m
Oy

by 1

A n (2+ky)™!

4 =0

(4)
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where i (1, 2, or 3) is a model number and A, is a constant in units of
(m/SCC)q. The oy values are related to the ¢, values by (Tscherning and
Rapp, ibid.)

Using (4) and (5) with (1) Tscherning gave: k -2, ki -1, ke B,
A = A, 10"/R? with R, in mcter

At this point Tscherning (1976) developed the necessary equations to eval- |

uate the covariances and auto covarian for the following quantities:(1) the
height anomaly; (2) the negative gravity disturbance r 3 (3) the gravity
anomaly (Ag); (4) the radial component of the gradient of Ag: (5) 11.)('
second order radial derivative of ; (60,07) the latitude and longitude com
ponents of the deflection of the vertical: (2),(9) the derivatives in the northern
and eastern direction of Ag; (10,,(11, the derivatives of the gray ity distur
bance in the northern and eastern direction; (12)~(14) the second order de
rivatives of T in the northern, in mixed northern and castern, and in the eastern
direction. Specific equations for these quantities can be found in Tscherning
(ibid., p. 2 and 3).

To implement these equations Tscherming devised a subroutine called
COVAX that was given in the report. A few corrections to the text and the
computer program have been made since its original publication. Such corrvec
tions can be obtained directly from Tsche rning.

1.9 Two Models for the Degrece Variances of Global Covariance Functions

In carrying out the computations with COVAX, Tscherning found that the
variance of the vertical gradient of the gravity anomaly was about 70001
which implies a horizontal anomaly gradient (C.) variance of 3500E . Moritz
(1977) showed that this high variance implies a correlation length (£) smaller
than found in practice. He then postulated a form of an anomaly covariance
function that implied an anomaly degree variance model that would avoid the
apparent problems of the Tscherning - RRipp model when dealing with gradient
covariance functions. Jekeli (197%) proceceded to investigate the Moritz sug-
gestion and attempted to provide new numcrical estimates of the anomaly degree
variance models.

Jekeli (ibid, ) expressed the anomaly covariance function, C( P,Q), in
the following form: o b
i RZ \?
C(P,Q) =) ¢, (B—) P (cosd) (6)
1= £ \rpry/ . '

where R, is the radius of a sphere to which the ¢, values are referred and ¢,
¥ ¥

is given by:
g y $ =] : f -1

+

: Lt ) 04 2
¢, Oy TTAO + O y

>3 (7)
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In this expression the parameters to be estimated are o, , oz, 0,, and g,
It was noted that if o, = 0, cquation (7) reduces to the Tscherning-Rapp model,
The values of A and B arc not easily found through adjustment procedures;
rather a trial and exror technigue js chosen,

dekeli then proposed to determine the parameters of the model by using
the following data; anomaly degree variances to degree 52 from Rapp (1977) or
to degree 20 from the GEM 9 solution; point anomaly variance; the vertieal '
gradient variance; and mean anomaly variances for 1° and 5° blocks. Special
consideration was given to using a high gradient variance (7000[42) and a low
gradient variance (400E7) to see the effect on the adjusted model.

Many different solutions were made by Jekeli to obtain solutions for the
wo component (o, 53 © 0) model and a one component (o, =0, & 3 #0) model.
Using the GIKM 9 degree variances to degree 20 the results of Jekeli's model
fits are shown in Table 1 (from Jekeli, p. 53). The best fit to the data is found
to be with the two component model with the low gradient variance. The one
component model does not give a good point anomaly variance when a low gra-
dicnt varance is used., At the lower degree (2~ 20) the ¢, value from one
model can be (wice that of another model. At degree 60 this difference has
decreased significantly; the magnitude of ¢, being on the order of 5 mga12 for
all models. These values are somewhat high when compared to recent (Rapp
1978) determinations showing values more on the order of 3 mgal®,

1.10 A Model Comparison in [ east-Squares Collocation

In addition to considering improved anomaly degree variance models needed
for covariance function computation, scveral studies were carried out to obtain
a better unde rstanding of some theoretical problems in least squares collocation.
One such study was carried out by Rummel (1976). Here Rummel pointed out
that two models of least squares collocation are in current use. The first he

vefers to as the model of Method One which is:
? Ax+s'+n (8)
where: ! 1s a vector of observations;
X is & vector of unknown parameters;
A is the coefficient matrix;
s’ is the random signal part of 7 ;
n is a random signal or noise.

The estimation of the signal at an arbitrary point is then given by (Rummel, ibid)

S Cogr (Carg *('.:}-F(Z—Ax) (9)

where Oy g0 is the covariance matrix between the "observed" quantities and
Csar 15 the covariance matrix between the signal (s) to be estimated and the
"observed signal.  Model One is the model originally suggested by Moritz (1972).
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A second model for use in least squares collocation was suggested by
Moritz and Schwarz (1973). This model is called Model Two by Rummel and is
writtea in the following form:

¢ Ax+ RS +n (10)

where s 15 the desired signal and appears directly in the model. The values
of s, x, and n in (10) are not necessarily the same as the values of in (8) and (9).
The solution for a signal is given by (Rummel):
. T " T 5 -1

S Ces R (RCis R +Cp,) ~ (£ -AX) (11)
It is this form of the collocation solution that is often reduced to one involving
an mversion of 2 matrix whose size is equal to that of the signals being estimated,
and not one requiring the inversion of a matrix whose size corresponds to the
number of observations used in the process.

kummel clearly shows that, in general, the results from (9) and (11) will
aot be the same. The only case of equivalence will be when we have:

S =N RS (12)

In most gravimetric applications R will have to be a matrix transforming an
infinite set of signals s (such as gravity anomalies) into s' (such as a geoid
undulation). In practice this could only be done in an approximate way. Thus
Rumrael proved that the two models used in least squares collocation are differ-
ent. Only in special cases should Model Two be preferred with most applications
being done using Model One.

1.11 Potential Coefficient Determinations from 10° Terrestrial Gravity Data
By Means of Collocation

A specific application of Model One was carried out by Sjoberg (1978a) .
He considered the estimation of potential coefficients from mean gravity apomaly
data given in 416 10° equal area anomaly blocks. In this case equation (9) takes
the following form;.

f%} {22:}<C+D>“Ag (13)

where C, S are the predicted fully normalized potential coefficients; C is the,
covariance matrix between the mean anomalies and ¢ ,Cs are the cross covari- i
ances between the potential coefficients and the mean anomalies; D is the eém/
covariance matrix of the anomalies., Instead of computing the mean cova {an '
functions by numerical integration Sjoberg (ibid) developed several diffgfent /
procedures including the usc of the smoothing operator of Pellinen, aggl the
evaluation of the point covariance functions at a certain elevation above the mean
sphere,

T
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Sjoberg carried out three different solutions: 1) a least squares collocation
solution considering the mean elevations of the anomaly blocks; 2) a least
squares collocation solution setting the elevations to zero; and 3 ) a collocation
solution setting the elevations to zoro and the noise matrix D to zero, These
solutions were then compared to the potential coefficients found from the usual

numerical integration procedure, to the GEM 9 potential coefficients, and to c¢o
efficients computed from 5° mean anomalics (Rapp, 1977a), Some results in

terms of differences are summarizod in Table 2.

Table 2. Comparison of Potential Coefficients From Teast

Squares C'ollocation and (it ts (data from Sjoberg, 1978a)

I, Peveentag S Undulation | RMS Anomaly

‘ Difference fe rence (m) ‘ Difference (mgals)

?__-.- o ‘ — ey
GEM 9, #251 | 63 8.7 | 7.2 (
GEM 9, Int. 10° | 73 8.8 7.6 g
GEM 9, Coll. 1 | 6 9,2 i 7.2 f
GEM 9, Coll. 2 6% : 1 7.2 !
GEM 9, Coll. 3 | 71 9.9 ; 7.5
# 251, Int. 10° ; 32 .0 3.6
i# 251, Coll, 1 I‘ 30 2. 8 | 3.3 .
it 251, Coll. 2 i 30 3. 0 Y o1 ‘
Int. 10°, Coll. 1| 13 2.4 ‘ 1.6
Int. 10°, Coll. 2| 14 .6 ; 1.7 ?
Int. 10°, Coll. 3| 15 5.2 | 1.9 |
Coll. 1, Colls 2 | 3 i , 0.7

{ S e R e et eeali e SR T S

From this data several things can !

1. The coefficients from the 57 solution agree better with the GEM 9 coeffi-
cients than the 10° solutions.

2. The effect of including the o] tions in the the collocation solution slightly
degrades the comparisons with GFEM O,

3. The best agreement with the cocfficients from the 10° anomalics takes
place when the D matrix is included with the collocation solution,

4. The collocation solutions norce hetter with the GEM 9 coefficients than
do the coefficients found from the usual integration procedures.

Sjoberg (ibid) also considered the computational effort in ea rrying out these
computations. He found that 19 seconds of computer time were needed for the
usual integration (or summation) procedure while 561 sevonds were needed for the
collocation 2 solution. Although the cocfficients from the colloeation solution may

15




be slightly better than the summation the tremendous increase in computational
cffort does not justify the use of least squares collocation for the estimation of
potential cocetficients from a global set of gravity anomalies.,

L. 12 A Compavcison of Bjerhammar's Method and Collocation in Physical Geodesy

\nother study was conducted by Sjoberg (1978b) on the relationship between
least squares collocation and the Bjerhammar theory. The Bjerhammar theory
postulates a sct of fictitious gravity anomalies, Ag*, located on the surface of
the Bjerhammar sphere (which is internal to all the masses). These anomalies
are related to the observed anomalies (Ag) through the Poisson integral, In
principal the Ag* values can be found from solving:

A A Ag* (14)
where the elements of A are determined from the elements of the Poisson integral.
The solution of (14) depends on the number of given anomalies and the number of

anomalies to be found. A similar equation to (14) for anomaly prediction can be
written using least squares collocation procedures:

Ag Col@ + Dy = Ag (15)

where the clements of ¢y and € depend on a spatial covariance function. Sjoberg
then examines various solutions of (14) writing a general form as:

Agr = QAT (AQATY 'Ag (16)
where Q is a weight matrix.  If the number N of the Ag* values approaches

infinity Sjoberg shows that in this case the solution of (16) and the resultant pre-
diction of new anomalies from the origingl set can be written as:

Ag Cq G g (17)
where the elements of the ¢ matrix are computed from:
: .\-1 z XA: \ N+« .
€14 Y ¢ K —— P (cos &) (18)
EsXy§/ ] 5

Here the ¢ ¢ are values uniquely associated with a minimum norm process of a
generalized Bjerbammar method. These ¢ * values are analogous to the anomaly
degree variances (c¢,) of the least squares collocation technique. Thus for each
type of degree variance in a collocation solution there is a corresponding minimum
norm solution in the generalized Bjerhammar theory (Sjoberg, ibid, p. 9).

Sjoberg (ibid) continues this discussion for a number of diffe rent cases, such
as including noisc in the Bjerhanimar theory, and an analysis of a reflexive pre-
diotion process suggested by Bjerhammar in 1974. These studies showed that for

a special case of ¢ * T Zn+1 the concept of reflexive prediction was less
semsitive to changes of the radius of the Bjerhammar sphere than was collocation.
~-16-




In the second method structural differences hetween the gravitational and
inertial fields are used to separate the two effects.  The differences show up in
the second and higher order gradients of the force ficlds. Therefore, additional
measurements are necessary in this case. Moritz (1967) has shown that for an
aircraft with inertial stabilization the scecond derivatives of the foree field do not
contain inertial disturbances, so that purcly gravitational second-order gradients
can be measured. They are uscd (o obtain the gravitational force vector by in-
tegrating along the flight path. [t should be noted that, in contrast to the first
method, a rigorous separation of gravitation and inertia is possible in this casc,
and that from a theoretical point of view this approach is preferable. The prac-
tical difficulties originate in the design of instruments accurate enough to make
an application feasible. Advances in instrument development have been rapid
during the last years and a gradiomcter with an accuracy of a few Eotvos may
be available in the near futurc. Therefore, the capabilitics of an airborne
gradiometer system was studiced by Schwarz (1976) in his report: "Geodetic
Accuracies Obtainable from Mcasurements of First and Second Order Gravita-
tional Graditents. "

The accuracy study of Schwirz was performed using the method of least-
squares collocation. There were three reasons why this approach was especially
suited for the problem. First, it allowed the combination of heterogeneous
data in a consistent way. This was very important because geoidal heights,
gravity anomalies, and different seccond-order gradients were used as measure-
ments. They must be evaluated in such a way that their common origin from the
same anomalous gravity field was part of the system. In least-squares collocation
this is achieved by describing the statistical structure of the field by a covariance
function. Second, mean gravity values at ground level must be estimated using
point values on a profile in flying altitude and additional information on ground.
This involved interpolation between profiles, downward continuation, combination
of different quantities, and estimation of mean values. All these steps could be
united in a single step procedure in the collocation method. This was impos-
sible when using the corresponding integral formulas. Third, different assump-
tions on the structure of the gravity ficld and on the accuracy of the measurements
must be investigated. Again this was simplce with the collocation method because
it only involved a change of the fundamental covariance function or of the error
variances.

A detailed analysis of interpolation, downward continuation and mean value
determinations was given by Schwarz, The influence of measureing errors was
considered and the effects were discussed in connection with the stability prob-
lem. Finally, the contribution of accurate satellite altimeter to a combined
accelerometer-gradiometer system was taken into account.,

The results of his study showed that a system of this kind could significantly
contribute to our knowledge of the anomalous gravity field if second-order grav-
itational gradients could be measured with an accuracy of a few Eotvos.




Sjoberg (ibid) found that the prediction results and the stability of the two methods
would be the same if the collocation procedure was applied with half the depth to
the Bjerhammar sphere used in the reflexive prediction. This condition was based
only on the analysis of one degree varinace model with additional analysis being

needed,

2. Analyses of Airborne Measurements

Dr. Schwarz was doing studics on airborne and satellite measurements and
their application for determination of mean anomalies. He prepared two reports
and did extensive computations for a test area.  Lenny Krieg was assisting him in
the computations for the test area, In the following Schwarz's work is summarized
based on his formal and informal reports, Some parts of his reports are quoted

here without quotation marks.,

I Cooodetie Accuracies Obtainable from Measurements of First and Second

Order Gravilationitl Gradients

Ixporiments with airborne gravimeters have been performed over the last

L'e vears,  Although the equipment designed for this objective has a high degree
of sophisticition, the results obtained so far are not accurate enough for geodetic
purposcs. The reason lies in the complicated structure of the force field acting
on a4 moving gravimeter,  Gravimeters are basically accelerometers and they

measure the resultant of gravitational and inertial forces. If they are used as
stationary instruments, as in most terrestrial applications, the only inertial
force acting on the gravimeter is the centrifugal force. Therefore, the output

of the instiument is the combined effect of gravitational attraction and centrifugal
force, e, grmvity, The situation is more complicated in a moving gravimeter.
The Coriolis foree has to be taken into account and, more important, irregular
daccelerations of the base will strongly influence the result of the measurements.
Such undesirvable incrtial forees are especijally strong in a moving aircraft and
there is no way Lo rigorously separate the gravitational part from the inertial
part by using crovimeter measurements only, Therefore, additional information
is necessary to extract the gravitational effect.

v methods have been proposed to reach this goal. In the first one infor-
perbion on tue frequencey behaviour of the different forces is used to separate
gravity aad disturbing accelerations by statistical filtering techniques. Meissl
(1970} has investigated this approach using the theory of stochastic processes
and cortain assumptions on the power spectra of the force fields involved. He
concludes that it is most difficult to separate gravitation and inertia in the me-
dium frequency vange with half wavelength between 30 and 150 km. This is only
possiblear detailed information on the two spectra is available which usually will
not he the case. The high frequencies can be blocked by a low pass filter, the
low frequencies can be improved by regularly updating altitude and position. The
remaining crrors will, however, be of a size which will not allow a useful geodetic
application of the filtered data, The findings from a probabilistic error analysis
were confirmed by results obtained by Szabo and Anthony (1971) in an analysis of
actual measurements,
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2.3 Other Studies

Using the results of the above studies, Schwarz computed mean gravity
anomalices from gradiometer and altimeter data for the selected test area which
was 257 in latitude times 20 in longitude.  The results of these extensive com-
putations as well as the corresponding computer programs were communicated
to AGL,

Schwarz also did studie n combination of satellite derived harmonic co-
efficients and terrestrial mean gravity anomalies by least-squares collocation.

The results were communicated informally to AFGL,,
3. Satellite to Satellite Tracking Rescarch

buring the period of the contract an evolutionary research development has
taken placce in the analysis of satellite to satellite tracking data for use in the re-
)

covery ol mean gravity anomitlies at the surface of the earth. This work is de-
scribed in three reports which arve briefly discussed in the following.

U'he first report in this arca unde v the contract was that of Rummel, Hajela,
and Rapp (1976).  This report first exstmined the theory where one satellite is
tracked by acother such that @ range rate between a relay satellite (such as ATS-6)
and a close satellite (such as Geos-3) could be determined. This range rate data
can be used to determine the Hine of sight seceleration between the relay and the
close satellite. A number of different geometries were considered to relate this
line of sight acceloration to the gradient of the disturbing potential. For one
approximation the following least square collocation solution was suggested:

*e RES

Ag(Q) = C(Q),, ¢ (Cr 1., +Dy)  (Rec /cos B), (19)

where: Ag is the predicted anomaly;
C () is the covariance between the anomaly heing predicted and the ra-
dial gravity disturbance at the close satellite observation point j;
the auto covariance matrix between the radial gravity distur-

{ . 18

bance components;

1) is the noise matrix

R is the residual line ol sight acceleration with respect to a refer-
ence field to which Ag will be referred;

A is the angle between the Line of sight acceleration at the close

satellite and the direction of the radial gravity disturbance.
Equation (19) is an approximation in the sense that only the radial component of the
gravity disturbance is being considered,

The next step was o series of numerical simulation studies designed to test
cquation (19). Yo do this orbits were generated (using Geodyne) in a reference
ficld and in a higher degree field desi,.. d to reflect reality, Residuals were
formed and predictions using (19) were carried out using covariances obtained
from COVAX (Tscherning, 1976). Predictions were made for 10° and 5° equal
arca anomalies with different data point intervals and different values for the
clements of the D matrix.  In this work it was estimated that with the geometry
of the Geos-3, ATS-6 satellite situation, 10° anomalies could be recovered to an
accuracy (s.d.y of about +4 mgals and 5° anomalies to an accuracy (s.d.) of about
+11 mgals.
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Additional tests indicated that the results were quite sensitive to errors in the
initial orbital elements and the values of the elements in the D matrix.

It was clear, however, that the suggested procedure did work in a simula-
tion mode and that it would be worthwhile to proceed to the analysis of real data,
Such an analysis is described in the report of Hajela (1977).

In the research carried out by Hajela (ibid) actual Geos-3, ATS-6 range
rate data provided by NASA was analyzed. The data supplicd was in the ATSR
format and was reformatted for entry into the Geodyn program. Five passes of
Geos-3 in the area ©: 15° to 30% and X: 275° to 295° were selected for pro-
cessing using initial state vectors supplied, in part, by NASA. After the best
set of initial state vectors were found (with the data available) the range rate
residuals were fitted to, and filtered by using precise continuous cubic splines
to fit the range-rate data in the least squares sense.  Hajela (ibid) found that the
optimum spacing of the nodes wheve the adjacent cubic splines met was every 60
seconds in fitting range-rate ohservations at 10 second intervals. After the
spline fit was made, the residual accelerations (R) are found by the differenti-
ation of the spline function. Using this process a smoothed set of accelerations
were obtained for parts of the five passes of Geos-3 across the area of interest.

Hajela (ibid) used this data to recover light 5° equal area anomalies. In
doing this recovery a number of different variables were considered including
the spacing of the nodes in the spline fitting, various accuracy estimates for use
in the D matrix of equation (19), usc of various arc combinations, and consider-
ation of initial epoch veetor errors.

The recovered anomalies were compared to ground truth data available from
terrestrial sources. The root mean squarc discrepancy between the recoverced
anomalies and the ground truth values was ¢ 8 mgals while the average predicted
standard deviation was +12 mgals. It was felt that these results were quite
satisfactory and that the proposed method was a workable technique for gravity
anomaly recovery,

After the above study it became clear that improved modeling could be done
for the anomaly recovery. In addition a number of questions remained unanswe red
concerning the estimation process. The main problem in the modelling area was
in relating the line of sight accelerations to the surface gravity anomalies, In the
previous reports various techniques for cvaluating the covariances were described,
However the application was not as dircct as one might want. To improve the sit-
uation Rummel and Rapp (1977) outlincd the equations needed to work directly with
line of sight accelerations instcad of radial gravity disturbances. Hajela (1978) im-
plemented these equations and carricd out new tests with real world data from the
ATS-6, Geos-3 satellites.

In this most recent study Hajela (ibid) examined a number of different topics.
One case considered was the removal of a lincar trend in the residual accelerations
caused by errors in the initial state vecetors, This was attempted by introducing a
systematic part (AX) to the original collocation model. Sample solutions were made
Il




solving for a linecar trend.  However Hajela (ibid) found that a considerable
portion of the signal was also removed from the residuals. Thus this technique
was not used further.

Haiela also looked at the correlation between the predicted anomalies from
the collocation solution using the data from the previous solution. He first made
tests for the recovery of the 5° equal area anomalies. He found for the eight
adjacent anomalies the largest correlation coeffxucnl was -0.09 indicating neg-
ligible correlation, A second test was made for the recovery of 2.°5 anomalies.
The lavgest correlation found for a 30 second data interval was 0.1 which mcroascd
to 0.3 when a 4 minute interval was used. The biggest change (from the 5° solu-
tion) was an increasc in the standard deviation from +10 mgals for the 5° anom-

alies to + 15 mgals for the 2.° 5 anomalies.

The main purpose of the Hajela (1978) report was the implementation of the
line of sight acceleration method, Hajela gives the specific equations for the
rigorous implementation of this method. He then uses this method with real data
based on improved satellite orbits. Data from a number of arcs was provided to
us by Jim Marsh from NASA. Hajela used the new technique for 5° anomaly re-
coverv. The cecovered anomalies ineight blocks were compared to corresponding
te rrmtmll anomalies and anomalies recently derived from Geos-3 altimeter data.
The root mean square difference between the SST derived anomaly and the altimeter
derived anomaly was  +7 mgals with an estimated standard deviation of each SST
anomaly being approximately +6 mgals.

These new tests indicate that the proposed method is a valid technique for

anomaly recovery from SST data, We now need more such data for further testing
of the method.

4, Convergence Pmblomq

Despite the general feeling that the convergence of the spherical harmonic
expansions to finite degree, on the surface of the earth, is not a problem, we have
carried out several studies to improve our understanding of the problem.

One such study, Rapp (1977b), described and tested a method for computing
gravity anomalies at the surface of the earth from spherical harmonic expansion
in such a way as to avoid convergence questions. The method is simple, being
basically a two step process, The first step takes the spherical harmonic ex-
pansion of the disturbing potential and then evaluates it at points, or in compoart-
ments, on a sphere that surrounds the mass of the earth. (The mass of the atmos-
phere was not considered in these computations.) The anomalies are then down-
ward continued to the surface of the carth using least squares collocation techniques.
To test this idea, 5° anomalies were used with their value computed at the surface
of the earth in two ways, [*irst the anomalies were computed on the bounding
sphere. A downward continuation correction was applied to obtain a surface anomaly
that was compared to the terrestrial dzaztd where a mean square difference of 91 mgal®




was found. Then the potential coctficient anomalies were computed directly i
the surface where a mean square difference of 109 mgal” was found,  In this
case the theoretically more corrcet procedure gave the hetter result,

The concept of the enclosing sphere computation also provides @ conveniont
formulation of the problem of computing potential cocflicients from surfice oy

ity anomalies.  This procedure can he vepresented in the following form:
C Cph ACH) + AC, (20)
where: C is the rigorous potential cocfficient;

C, is the approximate potentin! cocfficient derived from the usual sum
mation formula applicd to uncorrected anomaly data;

AC; is a correction dependent on the radius of the bounding sphere, o

i ! y S| y

mean ecarth radius, the cquatorial radius and the C. values:

ACy is a correction term compuied by applying the usual summation
formula to the upward continuation correction term.
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Studies were made of the magnitude of A, and AC,, expressed as a percentage
of the expected magnitudes of the toial cocfficients. Up to degree 12 the total
correction was less than 27/, At degree 10 the total corrcetion had reached
These figures indicated the corrections torims are small and negligible with the
current data accuracy. Additional investigations to higher degrees ave necded
using 1° x 1° anomalies.

A completely different view of this problem was taken by Sjoberg (1977a).
In the first part of his study Sjobery constructed a simple example to show that
the spherical harmonic expansion of (he corih's gravitational potential is diver-
gent at the surface of the carth. The crror caused by cvaluating a divergent
series but including only a finite number of terms was considered in terms of an
analytic continuation error and a truncation crror. The percentage crror in the
disturbing potential at degree 60 could rcach 20% when an improper downward
continuation procedure was applied to & sphere with a point mass located at a
height of 20 km above the sphere.

Sjoberg (ibid) extended his special casce to that of the real earth containing
topography. He computed crrors in the potential caused by neglecting topography
and compared his results to previous vesults found by Cook and 1evallois. Specific
equations for computing corrections terms due to the topography were derived and
applied for a spherical harmonic expansion of the disturbing potential and the grav-
ity anomaly. These equations were applicd to obtain global error estimates and to
obtain specific error estimates using 5° x 5° mean elevations. Errors on the order
of +1 meter were found for geoid undulations and up to 70 mgals for the anomalics.
This large anomaly error is unrealistic so that there is some concern on the cor-
rectness of some of the equations or data used by Sjoberg (ibidy. It may be that
smaller blocks (say 1°x 1°) are needed to adequately represent the true situation,
Thus additional work is called for in this arca.
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5. Other Arcas of Research

\s part of our continuing interest in estimating accuracies of gravimetric
quantitics Sjoberg (1977h) conswdered the estimation of the accuracies of the
computation of the deflection of the vertical, In this estimation Sjoberg (ibid)
considered that the deflections world he computed in three components: 1) a
contribution frow a sct of potential cocfficients; 2) a contribution from 1°x 1°
anomalies in an arcca surrounding the computation point; and 3 ) a contribution
from detaled data in the immedinte vicinity of the computation point, Since po-
centiadl cocfficients are known to a relatively low degree it was also necessary
to consider a trancation errvor. Also, the use of 1° x 1° anomalies implies that
cectain higher frequency information will be lost in the solution so that this
«ffect must be considered,

F'or cach of these effects or contributions, :w'ji;l)('l‘g (ibidy derived approx-
atle crror equations,  He applied these equations with the GEM 7 potential co-
cfficients and existing 1° x 1° mean anomaly information. Specific accuracy
estimates due to the various error sources were made for four points having
various accuracics of 19 x 19 auomalies surrounding them, Considering all
crror sources with the local data surrounding the point taken out to 1° from the
puint, Sjoberg (ibid) estimated the error in the total deflection to range from
+1.5" to #£2.3" with a cap to 20° of surrounding 1° x 1° data,

In another arca Keavsley (1977) examined the prediction of mean anomalics
al sea using collocation techniques applied (o selected geophysical phenomena. In
this paper the author reviewed some of the factors that influence anomalies at sea
including bottom topography (or occan depthy, and the age of the crust in the arca
of interest.

In considering these dependencies, Kearsley (ibidy developed auto covariance
functions for crustal age, the cross covariance function for anomalies and crustal
age, auto covariance functions for depth and a cross covariance function for anom-
alies and depth, all using data in 1% « 19 blocks. This information was used to
predict a number of 17 x 1° anomalics which were then compared to their known
values.  The root mean square difference found was +11.5 mgals which compares
favorably with the predicted standard deviations of about +11 mgals. Kearsley
{(ibidh suggests that all the data and covariances could be combined in one general
prediction process.

I the past few years great progress has been made in improving our knowl-
edge of the earth's gravity ficld.  Potential coefficient determinations from sat-
cllite data alone have been extended to degree 20 with many additional resonant
Lype terims.  Ina number of new arcas terrestrial data has become available,

And of most significant importance the Geos-3 altimeter data has enabled the

dete rmination of a large number of 1° x 1° mean anomalies. Rapp (1978) suggests
and implements a procedure to combine all this data in a rigorous least squares
adjustment process,  The technique was applied to the GEM 9 potential coefficient
sct taken to degree 12 field on an almos’ Al set of 1° x 1° anomalies. Speci-
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fically this anomaly field contained 50650 values, 28176 of which were derived
from Geos-3 altimeter data. The remaining valucs needed to form a glohal set
were taken to be zero with a standard deviation of + 30 mgals. The result of the
adjustment was an adjusted set of potential coefficients to degree 12 and an ad-
justed global set of 17 x 1° anomalies. These adjusted anomalics were developed
into potential coefficients to degree 60. These cocfficients must agree exactly
with the coefficients found in the actual adjustment process, Highcr degree so
lutions are possible, both in the adjustment process, and in the dete rmination of
the potential coefficients from the adjusted anomalics. The main advantage of the
technique used in Rapp (ibid) is that it provides a rigorous combination of the data
to obtain a consistent set of potential coefficients and 1° x 1° anomalics.
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